The Economical Cellulase Production under Optimized condition in Batch condition using Water Hyacinth (WH) Waste

Main Article Content

Abstract

Currently research attempted for enhanced cellulase production using Water hyacinth waste. We found that . Trichoderma reesei selected with WH for cellulase production. Optimization the effective conditions for production of CMCase temp-40 ⁰C, pH-5, tween80 3%, WH7.5%, nitrogen source 1% as peptone, incubation time 7days, inoculum 5% at rotation  100 rpm for FPase production only two condition was difference inoculum was higher (10%) and rotation speed was 150 rpm. Production of cellulase for CMCase was 52% more increase activity observed after media optimization and similar for FPase was 84% increase activity observed after media optimization.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

DR S M BHATT

IIMT UNIVERSITY MEERUT UTTAR PRADESH INDIA

How to Cite

Bhatt, Sheelendra M. “The Economical Cellulase Production under Optimized Condition in Batch Condition Using Water Hyacinth (WH) Waste”. Journal of Agriculture Biotechnology & Applied Sciences, vol. 1, no. 1, Mar. 2025, pp. 11-21, https://doi.org/10.63143/jabaas1120231121.

References

1.Baig, M. M., Mane, V. P., More, D. R., Shinde, L. P.,and Baig, M. I. (2003). Utilization of banana agricultural waste: production of cellulases by soil fungi. Journal of Environmental Biology. Vol. 24(2): 173–176.

2.Bayer, E. A., Lamed, R., and Himmerl, M. E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology. Vol. 18: 1–9.

3.Bhat, K. M., Hay, A. J., Claeyssens, M., & Wood,T. M. (1990). Study of the mode of action and site-specificity of the endo-(1----4)-beta-D-glucanases of the fungus Penicillium pinophilum with normal, 1-3H-labelled, reduced and chromogenic cello-oligosaccharides. Biochem. J, 266, 371-378.

4.Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances. Vol. 18: 355–383.

5.Bhat, M. K., and Bhat, S. (1997). Utilization of banana agricultural waste: production of cellulases by soil fungi. Biotechnology Advances. Vol. 15(3–4): 583–620.

6.Buchert, J., Oksanen, T., Pere, J., Siika-Aho, M., Suurnäkki, A., & Viikari, L. (1998). Applications of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma and gliocladium, 2, 343-363

7.Buchert, J., Suurnakki, A., Tenkanen, M., & Viikari, L. (1996). Enzymatic characterization of pulps.

8.Burton, J.( 2005). Water hyacinth Eichhorniacrassipes. Agfact.P7.6.43. third edition.

9.Chandra, M. S., Reddy, B. R., and Choi, Y. L. (2008). Optimization of extraction of FPase from the fermented bran of Aspergillus niger in solid state fermentation. Journal of Applied Bioanalytical Chemistry Vol. 51: 155-159.

10.Coughlan, M.P. (1985). Cellulases production properties and application. Biochemical Society Transactions. Vol. 13: 405-406.

11.Deshpande, P., Nair, S.,& Khedkar, S. (2009). Water hyacinth as carbon source for the production of cellulase by Trichoderma reesei. Applied biochemistry and biotechnology, 158(3), 552-560.

12.Devi, M. C., and Kumar, M. S. (2012) Production, Optimization and Partial purification of Cellulase by Aspergillus niger fermented with paper and timbeawmill industrial wastes. Journal of Microbiology & Biotechnology Research. Vol. 2(1).

13.Gbekeloluwa B. O. and Moo-young. (1991). Production and properties of $-glycosidaseby Neurosporasitophila. World Journal of Microbial Biotechnolnology. Vol. 7: 4–11.

14.Graham, H., & Balnavel, D. (2008). Dietary enzymes for increasing energy availability. Biotechnology in Animal Feeds and Animal Feeding, 295.

15.Grassin, C., & Fauquembergue, P. (1996). Fruit juices. Industrial enzymology, 2, 225-264.

16.Gray, K. A., Zhao, L., &Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology. Vol 10(2): 141–146.

17.Gullon, B., Yanez, R., Alonso, J. L. and Parajo, J. C. (2007). L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology. Vol. 99(2): 308–319.

18.Gunnarsson, C. C. and Petersen, C. M. (2007). Water hyacinths as a resource in agriculture and energy production: aliterature review. Waste Management (New York, N.Y.). Vol. 27(1): 117–129.

19.Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797-804.

20.Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797-804.

21.Hamilton L.M., Fogarty W.M. and Kelly C.T. (1999). Purification and properties of the cellulase production: IMD 434. Biotechnology Lett. 111–115.

22.Hoshino. E., Shiroshi, M., Amaho, Y., Nomula, M. and Kanda & T. Synergestic. (1997). Action of exotypecellulases in the hydrolysis of cellulases with different crystalllinities. Journal of Fermentation and Bioengineering. Vol. 84(4):300‐306.

23.Kikuchi, T., Takagi, M., Tokuhisa, E., Suzuki, T., Panjaitan, W. and Yasuno, M., (1997).Water hyacinth (Eichhorniacrassipes) as an indicator to show the absence of Anopheles suncaicus larvae. Medical Entomology & Zoology. Vol. 48(1): 11–18.

24.Kristensen, J. B., Thygesen, L. G., Felby, C., Jørgensen, H., & Elder, T. (2008). Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels, 1(5), 1-9.

25.Kumar, S. S., Kumar, B. R., & Mohan, G. K. (2009). Hepatoprotective effect of Trichosanthes cucumerina Var cucumerina L. on carbon tetrachloride induced liver damage in rats. Journal of ethnopharmacology, 123(2), 347-350.

26.Kung, L., Kreck, E. M., Tung, R. S., Hession, A. O., Sheperd, A. C., Cohen, M. A., ... & Leedle, J. A. Z. (1997). Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. Journal of Dairy Science, 80(9), 2045-2051.

27.Lee, B. H., Kim,B. K., Lee,Y. J., Chung,C. H., and Lee, J. W. (2010). Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by amarine bacterium, Bacillus subtitles subsp. subtitles A-53. Enzyme and Microbial Technology. Vol. 46(1): 38–42.

28.Lee, R.L., Paul, J.W., van Zyl, W.H. and Pretorius, I.S.( 2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 66.

29.Leynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews. Vol. 66(3): 506-577.

30.Liming, X., and Xueliang, S. (2004). High-yield cellulase production by Trichodermareesei ZU-02 on corn cob residue. Bioresource Technology. Vol. 91(3): 259–262.

31.Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International. Vol. 33: 122–138.

32.Milala, M. A., Shugaba, A., Gidado, A., Ene, A. C., & Wafar, J. A. (2005). Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res. J. Agric. Biol. Sci, 1(4), 325-328.

33.Mukhopadhyay, S., & Nandi, B. (1999). Optimization of cellulase production by Trichoderma reesei ATCC 26921 using a simplified medium on WHbiomass. J Sci Ind Res, 58, 107-111.

34.Nochure, S.V., Roberts, M.F. and Demain, A.I. (1993). True cellulases production by Clostridium thermocellum grown on different carbon sources. Biotechnology. Vol. 15: 641-646.

35.Olsson, L., and Hahn-Hagerdahl, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology. Vol. 18(5): 312–331.

36.Opande, G. O., Onyango, J. C., & Wagai, S. O. (2004). Lake victoria: The WH(Eichhorniacrassipes [Mart.] Solms), its socio-economic effects, control measures and resurgence in the Winam gulf. Limnologica Ecology and Management of Inland Waters. Vol. 34(1–2): 105–109.

37.R. M. (1997). Handbook of microbiological media (2nd ed.). New York: CRC.

38.Roy RK. A Primer on the Taguchi Method. Society of Manufacturing Engineers, 1990 Atlas,

39.Ryu, D., and Mandels, M. (1980).Cellulase: Biosynthesis and applications. Enzyme and Microbial Technology. Vol. 2: 91.

40.S. Rajesham, K. Jayakumaran, K. Ullah, J. Miller, J.M. D’Sullivan,S. Arunachalam, Process capability analysis for producing high precision cylindrical bores using ballisting and super abrasive reaming as a joint technique—Taguchi approach. International Conference on Quality Engineering and Management. 4–6th August Coimbatore,India, 1997, pp. 501–506.

41.Sen RK, Swaminathan T. Application of response surface methodology to evaluate the optimum environmental conditions for enhanced production of surfactin. Appl Microbial Biotechnol 1997; 47:358–63.

42.Sheth, K., & Alexander, J. K. (1969). Purification and properties of β-1, 4-oligoglucan: orthophosphate glucosyltransferase from Clostridium thermocellum. Journal of Biological Chemistry, 244(2), 457-464.

43.Siddiqui, K. S., Saqib, A. A. N., Rashid, M. H., & Rajoka, M. I. (2000). Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger. Enzyme and microbial technology. Vol. 27(7), 467-474.