Toxicological hair analysis using different techniques: A comparative review
Main Article Content
Abstract
Hair drug analysis is known to be an advanced toxicological method, used for retrospective examination of substance use over extended periods. This study aims to discuss the drug incorporation mechanisms and impact of pre-analytical processes such as segmentation, decontamination, and extraction. Additionally, this study has evaluated important analytical techniques like GC-MS and LC-MS- highlighting superiority of LC-MS for low-dose and thermolabile compounds. The result of the study has emphasized the importance of proper methodology and interpretation expertise in differentiating active use from passive exposure. With the non-invasive nature and broad detection window, hair analysis holds significant clinical and forensic value. Future directions include the formulation and implementation of standardization protocols, utilization of high-resolution mass spectrometry, and integration of data-driven models for the improvement in accuracy and legal defensibility.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution: You must credit the original creator, provide a link to the license, and indicate if you made changes. You can do this in any reasonable way, but you can't suggest that the original creator endorses you or your use.
- NonCommercial: You can't use the material for commercial purposes.
- NoDerivatives: If you remix, transform, or build upon the material, you can't distribute the modified material.
- You must own or control the copyright to the work.
- You can't revoke a CC license.
- Anyone who receives the material can rely on the license as long as the material is protected by copyright.
- If you created a work as part of your job, you might not own the copyright.
How to Cite
References
1. Aanstoos, C. M. (2024). Recreational drugs. Https://Www.Ebsco.Com/.
2. Al‐Zahrani, M. A., Al‐Asmari, A. I., Al‐Zahrani, F. F., Torrance, H. J., & Watson, D. G. (2021). Quantification of cannabinoids in human hair using a modified derivatization procedure and liquid chromatography–tandem mass spectrometry. Drug Testing and Analysis, 13(6), 1095–1107. https://doi.org/10.1002/dta.3005
3. Annamalai, J., Ganesan, S., Murugan, K., & Janjaroen, D. (2023). Recent breakthroughs set by fungal enzymes in the biosynthesis of nanoparticles. In Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications (pp. 131–162). Elsevier. https://doi.org/10.1016/B978-0-323-99922-9.00014-3.
4. Asif Khan. (2023). Pharmaceuticals Refer to a Category of Medical Products That are Designed to Diagnose. Journal of Pharmaceutical Toxicology, 6(4), 128–131. https://www.openaccessjournals.com/articles/pharmaceuticals-refer-to-a-category-of-medical-products-that-are-designed-to-diagnose.pdf
5. Aubry, A.-F. (2002). Applications of affinity chromatography to the study of drug–melanin binding interactions. Journal of Chromatography B, 768(1), 67–74. DOI: 10.1016/s0378-4347(01)00486-8
6. Auwärter, V., Sporkert, F., Hartwig, S., Pragst, F., Vater, H., & Diefenbacher, A. (2001). Fatty acid ethyl esters in hair as markers of alcohol consumption. Segmental hair analysis of alcoholics, social drinkers, and teetotalers. Clinical Chemistry, 47(12), 2114–2123. PMID: 11719475.
7. Bani, K. S., & Bhardwaj, K. (2021). Topical Drug Delivery Therapeutics, Drug Absorption and Penetration Enhancement Techniques. Journal of Drug Delivery and Therapeutics, 11(4), 105–110. https://doi.org/10.22270/jddt.v11i4.4864.
8. Barroso, M., & Gallardo, E. (2014). Hair Analysis for Forensic Applications: is The Future Bright? Bioanalysis, 6(1), 1–3. https://doi.org/10.4155/bio.13.291
9. Begun, A. L., & Murray, M. M. (Eds.). (2020). The Routledge Handbook of Social Work and Addictive Behaviors. Routledge. https://doi.org/10.4324/9780429203121
10. Benet, L. Z. (1978). Effect of route of administration and distribution on drug action. Journal of Pharmacokinetics and Biopharmaceutics, 6(6), 559–585. https://doi.org/10.1007/BF01062110
11. Benjamin, A., & Chidi, N. (2014). Drug abuse, addiction and dependence. Pharmacology and Therapeutics. InTech. doi: 10.5772/58574
12. Bertol, E., & Favretto, D. (2022). Pharmacokinetics: Drug Absorption, Distribution, and Elimination. In Karch’s Drug Abuse Handbook (pp. 133–178). CRC Press. 3rd Edition. eBook ISBN9781315155159
13. Bhowmik, D. (2012). Recent advances in novel topical drug delivery system. The Pharma Innovation, 1(9). https://www.thepharmajournal.com/archives/2012/vol1issue9/PartA/1.1.pdf
14. Bird, D., & Ravindra, N. M. (2020). Transdermal drug delivery and patches—An overview. MEDICAL DEVICES & SENSORS, 3(6). https://onlinelibrary.wiley.com/doi/10.1002/mds3.10069
15. Boumba, V. A., Ziavrou, K. S., & Vougiouklakis, T. (2006). Hair as a Biological Indicator of Drug Use, Drug Abuse or Chronic Exposure to Environmental Toxicants. International Journal of Toxicology, 25(3), 143–163. https://doi.org/10.1080/10915810600683028
16. Burke-Shyne, N., Csete, J., Wilson, D., Fox, E., Wolfe, D., & Rasanathan, J. J. K. (2017). How drug control policy and practice undermine access to controlled medicines. Health and Human Rights, 19(1), 237. https://pmc.ncbi.nlm.nih.gov/articles/PMC5473053/pdf/hhr-19-237.pdf
17. Cairns, T., Hill, V., Schaffer, M., & Thistle, W. (2004). Levels of cocaine and its metabolites in washed hair of demonstrated cocaine users and workplace subjects. Forensic Science International, 145(2–3), 175–181. https://doi.org/10.1016/j.forsciint.2004.04.033
18. Chourasia, R., & Jain, S. K. (2009). Drug targeting through pilosebaceous route. Current Drug Targets, 10(10), 950–967.DOI:10.2174/138945009789577918.
19. Cirimele, V., Kintz, P., Staub, C., & Mangin, P. (1997). Testing human hair for flunitrazepam and 7-amino-flunitrazepam by GC/MS-NCI. Forensic Science International, 84(1–3), 189–200. https://doi.org/10.1016/S0379-0738(96)02062-2.
20. Cone, E. J. (1996). Mechanisms of Drug Incorporation into Hair. Therapeutic Drug Monitoring, 18(4), 438–443. https://doi.org/10.1097/00007691-199608000-00022.
21. Cone, E. J., Yousefnejad, D., Darwin, W. D., & Maguire, T. (1991). Testing Human Hair for Drugs of Abuse. II. Identification of Unique Cocaine Metabolites in Hair of Drug Abusers and Evaluation of Decontamination Procedures. Journal of Analytical Toxicology, 15(5), 250–255. https://doi.org/10.1093/jat/15.5.250.
22. del Ramírez Fernández, M. del M., Barroso, M., & Andraus, M. (2025). Global Trends and Methodological Challenges in Hair Toxicology: A Survey‐Based Analysis. Drug Testing and Analysis. https://doi.org/10.1002/dta.3879
23. Drug delivery systems. (2015). In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 87–194). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00006-0
24. Dumestre-Toulet, V., Cirimele, V., Ludes, B., Gromb, S., & Kintz, P. (2002). Hair analysis of seven bodybuilders for anabolic steroids, ephedrine, and clenbuterol. Journal of Forensic Sciences, 47(1), 211–214.
25. DuPont, R. L., & Baumgartner, W. A. (1995). Drug testing by urine and hair analysis: complementary features and scientific issues. Forensic Science International, 70(1–3), 63–76. https://doi.org/10.1016/0379-0738(94)01625-F
26. Farah, H. A. (2020). The effect of heat and chemical penetration enhancers on the follicular absorption of topically applied drugs. 37(6):112. doi: 10.1007/s11095-020-02822-y.
27. Fernández, M. del M. R., Baumgartner, W. A., Wille, S. M. R., Farabee, D., Samyn, N., & Baumgartner, A. M. (2020). A different insight in hair analysis: Simultaneous measurement of antipsychotic drugs and metabolites in the protein and melanin fraction of hair from criminal justice patients. Forensic Science International. 312:110337. doi: 10.1016/j.forsciint.2020.110337. Epub 2020 May 19.
28. Flynn, G. L. (1996). Cutaneous and transdermal delivery—processes and systems of delivery. In Modern Pharmaceutics Revised and Expanded (pp. 314–385). CRC Press.
29. General considerations. (2015). In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 1–14). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00001-1
30. Goullé, J. P., Chèze, M., & Pépin, G. (2003). Determination of Endogenous Levels of GHB in Human Hair. Are there Possibilities for the Identification of GHB Administration through Hair Analysis in Cases of Drug-Facilitated Sexual Assault? Journal of Analytical Toxicology, 27(8), 574–580. https://doi.org/10.1093/jat/27.8.574 31.
31. Harkey, M. R. (1993). Anatomy and physiology of hair. Forensic Science International, 63(1–3), 9–18. https://doi.org/10.1016/0379-0738(93)90255-9
32. Hedaya, M. A. (2024). Routes of Drug Administration. In Pharmaceutics (pp. 537–554). Elsevier. https://doi.org/10.1016/B978-0-323-99796-6.00006-0
33. Hung, S.-H., Kan, H.-L., Tung, C.-W., Lin, Y.-C., Chen, T.-T., Tian, C., & Chang, W. C.-W. (2024). Probing the hair detectability of prohibited substances in sports: an in vivo-in silico-clinical approach and analytical implications compared with plasma, urine, and faeces. Archives of Toxicology, 98(3), 779–790. https://doi.org/10.1007/s00204-023-03667-1.
34. Institute for Quality and Efficiency in Health Care (IQWiG). (2006). Using medication: Learn More – Oral medications. InformedHealth.Org [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK279445/
35. Janna Anichina, Oscar G. Cabrices, Sean Orlowicz, Laura Snow, & Pierre Negri. (2019). Ultra-Sensitive Forensic Analysis of Cocaine and its Metabolites in Hair Samples. https://sciex.com/tech-notes/forensic/toxicology/ultra-sensitive-forensic-analysis-workflow-of-cocaine-and-its-me
36. Jasti, B. R., Abraham, W., & Ghosh, T. K. (2021). Transdermal and Topical drug delivery systems. In Theory and practice of contemporary pharmaceutics (pp. 423–454). CRC Press. eBook ISBN9780203644478
37. Palmer, J. (2024). Advancing the Development of Macrocyclic Peptide Therapeutics Using High-Throughput Mass Spectrometry Approaches (Doctoral dissertation, University of Washington).
38. Joseph, R. E., Su, T.-P., & Cone, E. J. (1996). In Vitro Binding Studies of Drugs to Hair: Influence of Melanin and Lipids on Cocaine Binding to Caucasoid and Africoid Hair. Journal of Analytical Toxicology, 20(6), 338–344. https://doi.org/10.1093/jat/20.6.338.
39. Khajuria, H., & Nayak, B. P. (2014). Detection of Δ9-tetrahydrocannabinol (THC) in hair using GC–MS. Egyptian Journal of Forensic Sciences, 4(1), 17–20. https://doi.org/10.1016/j.ejfs.2013.10.001
40. Kintz, P. (2003). Testing for anabolic steroids in hair: a review. Legal Medicine, 5, S29–S33. https://doi.org/10.1016/S1344-6223(02)00085-8
41. Kintz, P., & Cirimele, V. (1997). Interlaboratory comparison of quantitative determination of amphetamine and related compounds in hair samples. Forensic Science International, 84(1–3), 151–156. https://doi.org/10.1016/S0379-0738(96)02058-0.
42. Kintz, P., Villain, M., & Cirimele, V. (2006). Hair Analysis for Drug Detection. Therapeutic Drug Monitoring, 28(3), 442–446. https://doi.org/10.1097/01.ftd.0000211811.27558.b5.
43. Kintz, P., Villain, M., Cirimele, V., Pépin, G., & Ludes, B. (2004). Windows of detection of lorazepam in urine, oral fluid and hair, with a special focus on drug-facilitated crimes. Forensic Science International, 145(2–3), 131–135. https://doi.org/10.1016/j.forsciint.2004.04.027.
44. Klein, J., Karaskov, T., & Koren, G. (2000). Clinical applications of hair testing for drugs of abuse — the Canadian experience. Forensic Science International, 107(1–3), 281–288. https://doi.org/10.1016/S0379-0738(99)00171-1
45. Larsson, B., & Tjälve, H. (1979). Studies on the mechanism of drug-binding to melanin. Biochemical Pharmacology, 28(7), 1181–1187. https://doi.org/10.1016/0006-2952(79)90326-5.
46. López‐Guarnido, O., Álvarez, I., Gil, F., Rodrigo, L., Cataño, H. C., Bermejo, A. M., Tabernero, M. J., Pla, A., & Hernández, A. F. (2013). Hair testing for cocaine and metabolites by GC/MS: criteria to quantitatively assess cocaine use. Journal of Applied Toxicology, 33(8), 838–844. https://doi.org/10.1002/jat.2741
47. Matey, J. M., López-Fernández, A., García-Ruiz, C., Montalvo, G., Zapata, F., & Martínez, M. A. (2021). Identification of 2C-B in Hair by UHPLC-HRMS/MS. A Real Forensic Case. Toxics, 9(7), 170. https://doi.org/10.3390/toxics9070170
48. Mayo Clinic Staff. (2025). Drug Addiction (substance use disorder). Https://Www.Mayoclinic.Org/.
49. Mieczkowski, T., & Kruger, M. (2007). Interpreting the color effect of melanin on cocaine and benzoylecgonine assays for hair analysis: Brown and black samples compared. Journal of Forensic and Legal Medicine, 14(1), 7–15. https://doi.org/10.1016/j.jcfm.2005.09.004
50. Mizuno, A., Uematsu, T., & Nakashima, M. (1994). Simultaneous determination of ofloxacin, norfloxacin and ciprofloxacin in human hair by high-performance liquid chromatography and fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 653(2), 187–193. https://doi.org/10.1016/0378-4347(93)E0440-2
51. NT CONTRIBUTOR. (2003). SKILLS – INTRAMUSCULAR INJECTIONS. https://www.rch.org.au/rchcpg/hospital_clinical_guideline_index/Intramuscular_Injections/
52. Oluwole, I. S., ISHOLA, A. G., OJO, I. O., & BABARIMISA, O. (2024). Risk Factors and Consequences of Drug Abuse Among Undergraduate Students. Volume: 5, Issue: 6, Year: 2024 Page: 47-63 DOI: 10.5281/zenodo.14609260.
53. Palamar, J. J., & Salomone, A. (2023). On the challenges of hair testing to detect underreported substance use in research settings. The American Journal of Drug and Alcohol Abuse, 49(1), 1–4. doi: 10.1080/00952990.2023.2166414.
54. Papaseit, E., Joya, X., Velasco, M., Civit, E., Mota, P., Bertran, M., Vall, O., & Garcia-Algar, O. (2011). Hair analysis following chronic smoked-drugs-of-abuse exposure in adults and their toddler: a case report. Journal of Medical Case Reports, 5(1), 570. https://doi.org/10.1186/1752-1947-5-570
55. Patton, J. S., & Byron, P. R. (2007). Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery, 6(1), 67–74. https://doi.org/10.1038/nrd2153
56. Patzelt, A., & Lademann, J. (2013). Drug delivery to hair follicles. Expert Opinion on Drug Delivery, 10(6), 787–797. https://doi.org/10.1517/17425247.2013.776038.
57. Pichini, S., Ventura, M., Pujadas, M., Ventura, R., Pellegrini, M., Zuccaro, P., Pacifici, R., & de la Torre, R. (2004). HAIRVEQ: an external quality control scheme for drugs of abuse analysis in hair. Forensic Science International, 145(2–3), 109–115. https://doi.org/10.1016/j.forsciint.2004.04.025
58. Pragst, F., & Balikova, M. A. (2006). State of the art in hair analysis for detection of drug and alcohol abuse. Clinica Chimica Acta, 370(1–2), 17–49. https://doi.org/10.1016/j.cca.2006.02.019
59. Preuss, C. V, Kalava, A., & King, K. C. (2019). Prescription of controlled substances: benefits and risks. https://www.statpearls.com/point-of-care/40661
60. Röhrich, J., & Kauert, G. (1997). Determination of amphetamine and methylenedioxy-amphetamine-derivatives in hair. Forensic Science International, 84(1–3), 179–188. https://doi.org/10.1016/S0379-0738(96)02061-0
61. Rotolo, M. C., Pacifici, R., Pellegrini, M., Cardullo, S., Pérez, L. J. G., Cuppone, D., Gallimberti, L., & Madeo, G. (2021). Hair Testing for Classic Drugs of Abuse to Monitor Cocaine Use Disorder in Patients Following Transcranial Magnetic Stimulation Protocol Treatment. Biology, 10(5), 403. https://doi.org/10.3390/biology10050403
62. Scholz, C., Madry, M. M., Kraemer, T., & Baumgartner, M. R. (2022). LC–MS-MS Analysis of Δ9-THC, CBN and CBD in Hair: Investigation of Artifacts. Journal of Analytical Toxicology, 46(5), 504–511. https://doi.org/10.1093/jat/bkab056
63. Seear, K. (2024). Shifting solutions: Tracking transformations of drugs, health and the ‘human’through human rights processes in Australia. Health Sociology Review, 33(3), 257–272. doi: 10.1080/14461242.2023.2254746. Epub 2023 Sep 20.
64. Shah, I., Al-Dabbagh, B., Salem, A. E., Hamid, S. A. A., Muhammad, N., & Naughton, D. P. (2019). A review of bioanalytical techniques for evaluation of cannabis (Marijuana, weed, Hashish) in human hair. BMC Chemistry, 13(1), 106. https://doi.org/10.1186/s13065-019-0627-2
65. Skopp, G., Pötsch, L., & Moeller, M. R. (1997). On cosmetically treated hair — aspects and pitfalls of interpretation. Forensic Science International, 84(1–3), 43–52. https://doi.org/10.1016/S0379-0738(96)02047-6
66. Spiehler, V. (2000). Hair analysis by immunological methods from the beginning to 2000. Forensic Science International, 107(1–3), 249–259. https://doi.org/10.1016/S0379-0738(99)00168-1
67. Srogi, K. (2006). Hair Analysis as Method for Determination of Level of Drugs and Pharmaceutical in Human Body: Review of Chromatographic Procedures. Analytical Letters, 39(2), 231–258. https://doi.org/10.1080/00032710500476821
68. Tagliaro, F., Valentini, R., Manetto, G., Crivellente, F., Carli, G., & Marigo, M. (2000). Hair analysis by using radioimmunoassay, high-performance liquid chromatography and capillary electrophoresis to investigate chronic exposure to heroin, cocaine and/or ecstasy in applicants for driving licences. Forensic Science International, 107(1–3), 121–128. https://doi.org/10.1016/S0379-0738(99)00157-7
69. Thiblin, I., Lindquist, O., & Rajs, J. (2000). Cause and manner of death among users of anabolic androgenic steroids. Journal of Forensic Sciences, 45(1), 16–23. https://pubmed.ncbi.nlm.nih.gov/10641914/
70. Thorspecken, J., Skopp, G., & Pötsch, L. (2004). In Vitro Contamination of Hair by Marijuana Smoke. Clinical Chemistry, 50(3), 596–602. https://doi.org/10.1373/clinchem.2003.026120
71. Tiwari, C., Choudhary, M., Malik, P., JAISWAL, P. K., & Chauhan, R. (2022). Transdermal Patch: A Novel Approach for Transdermal Drug Delivery. Journal of Drug Delivery and Therapeutics, 12(6), 179–188. https://doi.org/10.22270/jddt.v12i6.5779
72. Usman, M., Naseer, A., Baig, Y., Jamshaid, T., Shahwar, M., & Khurshuid, S. (2019). Forensic toxicological analysis of hair: a review. Egyptian Journal of Forensic Sciences, 9(1), 17. https://doi.org/10.1186/s41935-019-0119-5
73. Vaiano, F., Scuffi, L., Lachi, A., Trignano, C., Argo, A., Mari, F., & Bertol, E. (2023). THC and THC-COOH hair concentrations: Influence of age, gender, consumption habits, cosmetics treatment, and hair features. Journal of Pharmaceutical and Biomedical Analysis, 225, 115237. https://doi.org/10.1016/j.jpba.2023.115237.
74. Villamor, J. L., Bermejo, A. M., Tabernero, M. J., & Fernández, P. (2004). Determination of Cannabinoids in Human Hair by GC/MS. Analytical Letters, 37(3), 517–528. https://doi.org/10.1081/AL-120028624
75. Wang, W. L., & Cone, E. J. (1995). Testing human hair for drugs of abuse. IV. Environmental cocaine contamination and washing effects. Forensic Science International, 70(1–3), 39–51. https://doi.org/10.1016/0379-0738(94)01616-D
76. Welch, M. J., Sniegoski, L. T., Allgood, C. C., & Habram, M. (1993). Hair Analysis for Drugs of Abuse: Evaluation of Analytical Methods, Environmental Issues, and Development of Reference Materials*. Journal of Analytical Toxicology, 17(7), 389–398. https://doi.org/10.1093/jat/17.7.389
77. Wissenbach, D. K., & Steuer, A. E. (2023). Advances in testing for sample manipulation in clinical and forensic toxicology - Part A: urine samples. Analytical and Bioanalytical Chemistry, 415(21), 5101–5115. https://doi.org/10.1007/s00216-023-04711-w
78. Yan, H., Xiang, P., & Shen, M. (2021). Current status of hair analysis in forensic toxicology in China. Forensic Sciences Research, 6(3), 240–249. https://doi.org/10.1080/20961790.2021.1921945
79. Yu, Y.-Q., Yang, X., Wu, X.-F., & Fan, Y.-B. (2021). Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.646554