PLANT ENDOPHYTES: A NATURAL SOLUTION FOR SUSTAINABLE AGRICULTURE AND CROP PROTECTION
Main Article Content
Abstract
Endophytes are microorganisms that live within plant tissues without causing harm and play a crucial role in enhancing plant health and agricultural productivity. These beneficial microbes include bacterial genera such as Bacillus and Pseudomonas, as well as fungal species like Trichoderma and Fusarium. They establish symbiotic relationships with their host plants, contributing to plant growth through the production of phytohormones, aiding in nutrient solubilization, and improving resistance against both biotic and abiotic stresses. Endophytes have the ability to suppress pathogens, enhance drought and salinity tolerance, and mitigate oxidative stress, making them valuable in sustainable agriculture. Additionally, they produce a variety of secondary metabolites that possess antimicrobial properties and boost plant defense, offering potential alternatives to chemical fertilizers and pesticides. Despite their promising applications, there are challenges such as difficulties in isolation, variability
in performance in the field and regulatory concerns that must be addressed for their widespread use. However, advances in biotechnology, including genetic engineering and omics technologies, are paving the way for improved applications of endophytes in agriculture. This review explores the diversity, mechanisms, and potential of endophytes in crop production, highlighting their role in promoting sustainable and eco-friendly farming practices.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution: You must credit the original creator, provide a link to the license, and indicate if you made changes. You can do this in any reasonable way, but you can't suggest that the original creator endorses you or your use.
- NonCommercial: You can't use the material for commercial purposes.
- NoDerivatives: If you remix, transform, or build upon the material, you can't distribute the modified material.
- You must own or control the copyright to the work.
- You can't revoke a CC license.
- Anyone who receives the material can rely on the license as long as the material is protected by copyright.
- If you created a work as part of your job, you might not own the copyright.
How to Cite
References
REFERENCES
1. Adesemoye, A. O., & Kloepper, J. W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85(1), 1-12. https://doi.org/10.1007/s00253-009-2196-0
2. Afzal, I., Shinwari, Z. K., & Sikandar, S. (2019). Endophytic bacteria in plant growth promotion and resistance. Plant Growth Regulation, 87(2), 355-375. https://doi.org/10.1007/s10725-019-00487-6
3. Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, and applications in sustainable agriculture. Microbiological Research, 221, 36-49. https://doi.org/10.1016/j.micres.2019.02.001
4. Arora, N. K., Verma, M., & Kumar, M. (2020). Microbe-based sustainable agriculture and environmental sustainability. Microbiological Research, 241, 126565. https://doi.org/10.1016/j.micres.2020.126565
5. Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, R. M., & Baldani, V. L. (2014). The Herbaspirillum genus and its role in sustainable agriculture. Biological Nitrogen Fixation, 3, 1279-1292. https://doi.org/10.1007/978-94-017-9181-5_59
6. Balsanelli, E., Tuleski, T. R., Faoro, H., Weiss, V. A., Baura, V. A., & Monteiro, R. A. (2016). Molecular interactions between Herbaspirillum and host plants: The role of secretion systems in endophytic colonization. Molecular Plant-Microbe Interactions, 29(6), 476-485. https://doi.org/10.1094/MPMI-09-15-0215-R
7. Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
8. Berdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65(8), 385–395. https://doi.org/10.1038/ja.2012.27
9. Berdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65(8), 385–395. https://doi.org/10.1038/ja.2012.27
10. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51(2), 215-229. https://doi.org/10.1016/j.femsec.2004.08.006
11. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., & Chen, X. (2021). Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 9(1), 1-22. https://doi.org/10.1186/s40168-021-01067-7
12. Bhattacharjee, R., Singh, A., & Mukhopadhyay, S. K. (2008). Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: Prospects and challenges. Applied Microbiology and Biotechnology, 80(2), 199–209. https://doi.org/10.1007/s00253-008-1567-2
13. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
14. Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant growth-promoting rhizobacteria (Azospirillum spp.). Plant Biology, 16(5), 785-795. https://doi.org/10.1111/plb.12161
15. Clay, K. (1988). Fungal endophytes of grasses: A defensive mutualism between plants and fungi. Ecology, 69(1), 10-16. https://doi.org/10.2307/1943155
16. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizosphere: Potential applications, mechanisms, and challenges. Plant and Soil, 321(1-2), 1-30. https://doi.org/10.1007/s11104-009-9281-2
17. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizosphere: Interactions with plants, mechanisms involved, and applications. International Journal of Molecular Sciences, 11(3), 321–345. https://doi.org/10.3390/ijms11030321
18. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
19. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
20. Compant, S., Nowak, J., Coenye, T., Clément, C., & Ait Barka, E. (2008). Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews, 32(4), 607-626. https://doi.org/10.1111/j.1574-6976.2008.00113.x
21. Compant, S., Saikkonen, K., Mitter, B., Campisano, A., & Mercado-Blanco, J. (2019). Editorial special issue: The plant endosphere and its microbiome. Plant and Soil, 422(1-2), 1-10. https://doi.org/10.1007/s11104-018-3783-3
22. Contreras-Cornejo, H. A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A., & López-Bucio, J. (2009). Trichoderma spp. Modulate root architecture and promote growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592. https://doi.org/10.1104/pp.108.130369
23. Dong, Y., Iniguez, A. L., Ahmer, B. M., & Triplett, E. W. (2003). Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Applied and Environmental Microbiology, 69(3), 1783-1790. https://doi.org/10.1128/AEM.69.3.1783-1790.2003
24. Dutta, S., & Podile, A. R. (2010). Plant growth-promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36(3), 232–244. https://doi.org/10.3109/10408411003766806
25. Estrada-de los Santos, P., Bustillos-Cristales, M. R., & Caballero-Mellado, J. (2016). Burkholderia, Gluconacetobacter, Herbaspirillum, and Klebsiella species associated with maize and other grasses. Applied and Environmental Microbiology, 72(5), 3401-3407. https://doi.org/10.1128/AEM.72.5.3401-3407.2006
26. Estrada-De Los Santos, P., Bustillos-Cristales, R., & Caballero-Mellado, J. (2016). Burkholderia, Gluconacetobacter, and Herbaspirillum: Plant-associated nitrogen-fixing bacteria. Microbiology Monographs, 9, 273-296. https://doi.org/10.1007/978-3-662-49785-1_12
27. Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., & Gao, X. (2018). Bacillus velezensis FZB42 in biocontrol of plant diseases—a systematic review. Molecular Plant-Microbe Interactions, 31(1), 13-23. https://doi.org/10.1094/MPMI-05-17-0128-FI
28. Filgueiras, C. C., Willems, A., James, E. K., & Reis, V. M. (2020). Herbaspirillum: The environment-genome relationship that drives its interaction with plants. Microbiological Research, 237, 126481. https://doi.org/10.1016/j.micres.2020.126481
29. Fukami, J., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2018). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. Agronomy Journal, 110(4), 1623-1638. https://doi.org/10.2134/agronj2018.02.0076
30. Gagne-Bourque, F., Aliferis, K. A., Seguin, P., & Jabaji, S. (2015). Herbaspirillum seropedicae-induced changes in maize leaf metabolomes. Plant Science, 239, 99-109. https://doi.org/10.1016/j.plantsci.2015.07.014
31. Gao, Z., Han, M., Hu, Y., Li, Z., Liu, C., Wang, X., & Wang, J. (2020). Advances in synthetic biology for microbial production of bioactive natural products. Synthetic and Systems Biotechnology, 5(4), 245-251. https://doi.org/10.1016/j.synbio.2020.09.003
32. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
33. Gómez-Lama Cabanás, C., Schilirò, E., Valverde-Corredor, A., & Mercado-Blanco, J. (2018). Systemic responses in a susceptible olive cultivar upon root colonization by the biocontrol strain Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 9, 113. https://doi.org/10.3389/fmicb.2018.00113
34. Gómez-Lama Cabanás, C., Schilirò, E., Valverde-Corredor, A., & Mercado-Blanco, J. (2018). Endophytic Colletotrichum species in tea plants. Frontiers in Microbiology, 9, 921. https://doi.org/10.3389/fmicb.2018.00921
35. González, A., Vázquez-Baeza, Y., Pett-Ridge, J., & Tringe, S. G. (2018). Microbial community dynamics and functions in the rhizosphere of metal-contaminated soils. Applied and Environmental Microbiology, 84(3), e01971-17. https://doi.org/10.1128/AEM.01971-17
36. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538. https://doi.org/10.3389/fmicb.2016.01538
37. Goudjal, Y., Toumatia, O., Yekkour, A., Sabaou, N., Mathieu, F., & Zitouni, A. (2014). Biocontrol potential of endophytic actinomycetes from native plants of Algerian Sahara: Isolation, identification, and evaluation of their antifungal activity against Fusarium oxysporum f. sp. albedinis causing bayoud disease of date palm. Journal of Plant Pathology, 96(3), 405-413. https://doi.org/10.4454/JPP.V96I3.024
38. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nature Reviews Microbiology, 3(4), 307-319. https://doi.org/10.1038/nrmicro1129
39. Hardoim, P. R., van Overbeek, L. S., & Elsas, J. D. (2015). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 23(12), 749-763. https://doi.org/10.1016/j.tim.2015.06.006
40. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
41. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species: Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
42. Hyde, K. D., Soytong, K., & McKenzie, E. H. (2019). The fungal endophyte dilemma. Fungal Diversity, 97, 1-18. https://doi.org/10.1007/s13225-019-00432-2
43. Johnson, K. B., Stockwell, V. O., & Sugar, D. (2013). Interactions of host resistance, biocontrol agents, and their integration for control of fire blight in pear. Phytopathology, 103(4), 301-309. https://doi.org/10.1094/PHYTO-06-12-0134-R
44. Khalifa, M. A., Osman, M. E., & Youssef, H. H. (2016). Phosphate-solubilizing endophytic bacteria associated with lettuce plants: Isolation, identification, and effects on plant growth promotion. International Journal of Agriculture and Biology, 18(3), 462–468. https://doi.org/10.17957/IJAB/15.0166
45. Khan, A. L., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Farsi, Z., & Lee, I. J. (2015). Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35(1), 62-74. https://doi.org/10.3109/07388551.2013.823595
46. Khan, A. L., Waqas, M., Hussain, J., & Lee, I. J. (2017). Phytohormones assisted nutrient acquisition and abiotic stress tolerance: An endophytic perspective. Microbiological Research, 205, 107–117. https://doi.org/10.1016/j.micres.2017.09.004
47. Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., & Ismail, I. (2017). Role of plant growth-promoting rhizobacteria in abiotic stress tolerance via secondary metabolites. Sustainability, 9(5), 762. https://doi.org/10.3390/su9050762
48. Kumar, A., & Gera, R. (2014). Role of Bacillus subtilis in wheat growth promotion. Journal of Plant Pathology, 96(1), 1-10
49. Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice systems: State of knowledge and future prospects. Plant and Soil, 252(1), 151-167. https://doi.org/10.1023/A:1024190513712
50. Lata, R., Chowdhury, S., Gond, S. K., & White, J. F. (2018). Induction of abiotic stress tolerance in plants by endophytic microbes. Frontiers in Microbiology, 9, 2123. https://doi.org/10.3389/fmicb.2018.02123
51. Lata, R., Chowdhury, S., Gond, S. K., & White, J. F. (2018). Induction of abiotic stress tolerance in plants by endophytic microbes. Frontiers in Microbiology, 9, 2123. https://doi.org/10.3389/fmicb.2018.02123
52. Li, J., Zhao, G., Zeng, R., & Wei, J. (2012). Allelopathic potential of endophytic Fusarium spp. from Ginkgo biloba against pathogenic fungi. Biological Control, 61(1), 70–78. https://doi.org/10.1016/j.biocontrol.2011.10.013
53. Li, X., He, C., He, Z., Zhou, Q., & Liu, Y. (2018). Phosphate solubilization and plant growth promotion by Penicillium spp. Isolated from composts and rhizosphere soils. Applied Soil Ecology, 126, 16-24. https://doi.org/10.1016/j.apsoil.2018.01.009
54. Martínez, R., Gutiérrez-Román, M. I., Serrano-Ruiz, H., Sánchez-Carbente, M. D. R., Nikel, P. I., & Bolívar, F. (2017). Engineering Gram-negative microbial cell factories for the production of plant and fungi-derived natural products. Nature Chemical Biology, 13(3), 234-243. https://doi.org/10.1038/nchembio.2308
55. Miller, K. I., Qing, C., Sze, D. M., & Neilan, B. A. (2012). Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLOS ONE, 7(5), e35953. https://doi.org/10.1371/journal.pone.0035953
56. Mishra, A., Patel, M., & Nautiyal, C. S. (2021). Microbial iron acquisition and plant health promotion: Mechanisms and applications. Journal of Applied Microbiology, 130(1), 1–14. https://doi.org/10.1111/jam.14771
57. Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M., & Kenerley, C. M. (2012). Trichoderma research in the genome era. Annual Review of Phytopathology, 50, 291-313. https://doi.org/10.1146/annurev-phyto-081211-172944
58. Müller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2016). The plant microbiota: Systems-level insights and perspectives. Annual Review of Genetics, 50, 211-234. https://doi.org/10.1146/annurev-genet-120215-034952
59. Oldroyd, G. E. (2013). Speak, friend, and enter: Signaling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252-263. https://doi.org/10.1038/nrmicro2990
60. Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010
61. Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2022). Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. Frontiers in Microbiology, 13, 826302. https://doi.org/10.3389/fmicb.2022.826302
62. Ownley, B. H., Weller, D. M., & Alabouvette, C. (2008). Biological control of plant-pathogenic fungi. Plant Health Progress, 9(1), 1-14. https://doi.org/10.1094/PHP-2008-0125-01-RV
63. Pal, K. K., & McSpadden Gardener, B. B. (2006). Biological control of plant pathogens. The Plant Health Instructor, 6(1), 111-120. https://doi.org/10.1094/PHI-A-2006-1117-02
64. Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., & Yu, L. (2021). Exploring the diversity and potential agricultural applications of endophytic fungi. Frontiers in Microbiology, 12, 674414. https://doi.org/10.3389/fmicb.2021.674414
65. Peix, A., Ramírez-Bahena, M. H., Velázquez, E., & Bedmar, E. J. (2015). Bacterial associations with legumes. Critical Reviews in Plant Sciences, 34(1–3), 17–42. https://doi.org/10.1080/07352689.2014.897899
66. Peix, A., Rivas-Boyero, A. A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E., & Velázquez, E. (2015). Growth promotion and nitrogen fixation in soybean by Bradyrhizobium japonicum. Applied Soil Ecology, 85, 28-37. https://doi.org/10.1016/j.apsoil.2014.08.015
67. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2014). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
68. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
69. Rajendran, L., Samiyappan, R., & Raguchander, T. (2012). Endophytic actinobacteria in cotton plant disease management. Journal of Biological Control, 26(1), 55-64.
70. Rajendran, N., Samiyappan, R., & Raguchander, T. (2012). Endophytic Bacillus spp. Mediate defense responses in chickpeas against Fusarium oxysporum infection. Biological Control, 60(1), 69–78. https://doi.org/10.1016/j.biocontrol.2011.10.011
71. Redman, R. S., Kim, Y. O., Woodward, C. J., & Rodriguez, R. J. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE, 6(7), e14823. https://doi.org/10.1371/journal.pone.0014823
72. Rodriguez, R. J., White Jr, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182(2), 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
73. Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
74. Santoyo, G., Orozco-Mosqueda, M. C., & Govindappa, M. (2021). Mechanisms of biocontrol and plant growth-promoting activities in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 31(9), 955-980. https://doi.org/10.1080/09583157.2021.1893923
75. Scherling, C., Ulrich, K., Ewald, D., & Weckwerth, W. (2020). A metabolomics approach to assessing the potential of endophytes for biotechnological applications. Metabolites, 10(6), 242. https://doi.org/10.3390/metabo10060242
76. Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., ... & Reinhold-Hurek, B. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25(1), 28-36. https://doi.org/10.1094/MPMI-08-11-0204
77. Sessitsch, A., Pfaffenbichler, N., & Mitter, B. (2019). Microbiome applications from lab to field: Facing complexity. Trends in Plant Science, 24(2), 194-198. https://doi.org/10.1016/j.tplants.2018.11.002
78. Sharma, V., Salwan, R., Sharma, P. N., & Kanwar, S. S. (2020). Plant microbiome and its potential role in sustainable agriculture. Applied Microbiology and Biotechnology, 104(13), 5241-5254. https://doi.org/10.1007/s00253-020-10620-4
79. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
80. Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A., & Delgado-Baquerizo, M. (2016). Crop microbiome and sustainable agriculture. Nature Reviews Microbiology, 18(10), 601-602. https://doi.org/10.1038/s41579-020-0363-9
81. Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
82. Taghavi, S., van der Lelie, D., Hoffman, A., Zhang, Y. B., Walla, M. D., & Vangronsveld, J. (2009). Genome sequence of the plant growth-promoting endophytic bacterium Enterobacter sp. 638. Nature Biotechnology, 27(7), 728-734. https://doi.org/10.1038/nbt.1557
83. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621. https://doi.org/10.1038/s41579-020-0412-1
84. Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzón, A., Ownley, B. H., Pell, J. K., Rangel, D. E. N., & Roy, H. E. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2(4), 149-159. https://doi.org/10.1016/j.funeco.2009.05.001
85. Verma, J. P., Yadav, J., Tiwari, K. N., & Kumar, A. (2017). Impact of plant growth-promoting rhizobacteria on crop production. International Journal of Agriculture and Biology, 19(3), 478-492. https://doi.org/10.17957/IJAB/15.0314
86. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
87. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2018). Enhancement of drought stress tolerance in crops by plant growth-promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
88. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., & Kim, Y. H. (2012). Endophytic fungi: Role in crop improvement, nutrient uptake, and stress management. Fungal Diversity, 54, 93-107. https://doi.org/10.1007/s13225-012-0151-z
89. White, J. F., Bacon, C. W., Hywel-Jones, N. L., & Spatafora, J. W. (2019). Microbial Endophytes. CRC Press.
90. Wilson, D. (1995). Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 73(2), 274-276. https://doi.org/10.2307/3545919
91. Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968–989. https://doi.org/10.1128/MMBR.63.4.968-989.1999
92. Zhou, C., Ma, Z., Zhu, L., & Guo, J. (2016). Plant defense responses induced by endophytic Piriformospora indica against Fusarium infection in wheat. Plant Molecular Biology Reporter, 34(5), 1023–1033. https://doi.org/10.1007/s11105-016-0976-8