The WHEAT MARKER FOR BETTER YIELD AND HEAT STRESS TOLERANCE: A REVIEW
Main Article Content
Abstract
Background
Wheat is a staple crop that plays a critical role in global food security, making its yield and resilience to environmental stressors essential for sustaining the growing human population. Improving wheat yield and heat stress tolerance is crucial in the face of climate change, which poses significant challenges to agricultural productivity and food supply.
Previous research has identified various genetic markers associated with wheat yield and stress tolerance, but their effectiveness under varying climatic conditions remains inconsistent.
Research Method
A combination of Literature survey at Google Scholar, Pubmed, Scispace etc to retrieve the data about wheat markers in improving yield and heat stress tolerance.
Literature Review
A comprehensive review of existing literature on wheat genetics and climate resilience was conducted to inform the research framework.
Data Collection
Data on wheat yield, heat stress tolerance, and related agronomic traits were collected through on line published article NCBI Google scholar,
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Attribution: You must credit the original creator, provide a link to the license, and indicate if you made changes. You can do this in any reasonable way, but you can't suggest that the original creator endorses you or your use.
- NonCommercial: You can't use the material for commercial purposes.
- NoDerivatives: If you remix, transform, or build upon the material, you can't distribute the modified material.
- You must own or control the copyright to the work.
- You can't revoke a CC license.
- Anyone who receives the material can rely on the license as long as the material is protected by copyright.
- If you created a work as part of your job, you might not own the copyright.
How to Cite
References
1. Chunduri V, Kaur A, Kaur S, et al. Gene Expression and Proteomics Studies Suggest an Involvement of Multiple Pathways Under Day and Day–Night Combined Heat Stresses During Grain Filling in Wheat. Front Plant Sci. 2021;12. doi:10.3389/fpls.2021.660446
2. Wollenweber B, Porter JR, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci. 2003;189(3):142-150.
3. De Lima CZ, Buzan JR, Moore FC, Baldos ULC, Huber M, Hertel TW. Heat stress on agricultural workers exacerbates crop impacts of climate change. Environmental Research Letters. 2021;16(4). doi:10.1088/1748-9326/abeb9f
4. Kumar V, Dwivedi P, Kumar P, et al. Mitigation of heat stress responses in crops using nitrate primed seeds. South African Journal of Botany. 2021;140:25-36. doi:10.1016/j.sajb.2021.03.024
5. Cohen I, Zandalinas SI, Huck C, Fritschi FB, Mittler R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant. 2021;171(1):66-76. doi:10.1111/ppl.13203
6. Eyshi Rezaei E, Webber H, Gaiser T, Naab J, Ewert F. Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy. 2015;64:98-113. doi:10.1016/j.eja.2014.10.003
7. Mondal S, Mason RE, Huggins T, Hays DB. QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica. 2015;201(1):123-130. doi:10.1007/s10681-014-1193-2
8. Pankaj YK, Kumar R, Pal L, et al. Mapping QTLs for morpho-physiological traits related to grain yield under late sown conditions in wheat (Triticum aestivum L.). Cereal Res Commun. 2022;50(4):779-788. doi:10.1007/s42976-021-00234-1
9. Francisco CS, McDonald BA, Palma-Guerrero J. A transcription factor and a phosphatase regulate temperature-dependent morphogenesis in the fungal plant pathogen Zymoseptoria tritici. Fungal Genetics and Biology. 2023;167. doi:10.1016/j.fgb.2023.103811
10. Arif M, Haroon M, Nawaz AF, Abbas H, Xu R, Li L. Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges. Plant Mol Biol. 2025;115(2):41. doi:10.1007/s11103-025-01569-7
11. Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 2008;48(6):2372-2380.
12. Huang B, Rachmilevitch S, Xu J. Root carbon and protein metabolism associated with heat tolerance. J Exp Bot. 2012;63(9):3455-3465.
13. Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 2012;160(4):1710-1718.
14. Almeselmani M, Deshmukh PS, Chinnusamy V. Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant stress. 2012;6(1):25-32.
15. Wardlaw IF, Wrigley CW. Heat tolerance in temperate cereals: an overview. Published online 1994.
16. Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14(1):30-36.
17. Šramková Z, Gregová E, Šturd’ik E. Chemical composition and nutritional quality of wheat grain. Acta chimica slovaca. 2009;2(1):115-138.
18. Asthir B, Bhatia S. In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress. J Food Sci Technol. 2014;51:118-123.
19. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-349. doi:10.1007/s00253-005-0142-3
20. Liu P, Guo W, Jiang Z, et al. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci. 2011;149(2):159-169.
21. Krishnan M, Nguyen HT, Burke JJ. Heat Shock Protein Synthesis and Thermal Tolerance in Wheat. Plant Physiol. 1989;90(1):140-145. doi:10.1104/pp.90.1.140
22. Wang YX, Yu TF, Wang CX, et al. Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. Int J Biol Macromol. 2023;246. doi:10.1016/j.ijbiomac.2023.125694
23. Rampino P, Mita G, Pataleo S, De Pascali M, Di Fonzo N, Perrotta C. Acquisition of thermotolerance and HSP gene expression in durum wheat (Triticum durum Desf.) cultivars. Environ Exp Bot. 2009;66(2):257-264.
24. Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 2018;6. doi:10.3389/fchem.2018.00026
25. Jagadish SVK, Pal M, Sukumaran S, Parani M, Siddique KHM. Heat stress resilient crops for future hotter environments. Plant Physiology Reports. 2020;25(4):529-532. doi:10.1007/s40502-020-00559-9
26. Xue GP, Sadat S, Drenth J, McIntyre CL. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot. 2014;65(2):539-557. doi:10.1093/jxb/ert399
27. Mumtaz S, Naqvi SSM, Shereen A, Khan MA. Proline accumulation in wheat seedlings subjected to various stresses. Published online 1995.
28. Heber U, Santarius KA. Cell death by cold and heat and resistance to extreme temperatures: mechanisms of hardening and dehardening. Temperature and life. Published online 1973.
29. Kuo CG, Chen HM, Ma LH. Effect of High Temperature on Proline Content in Tomato Floral Buds and Leaves. Journal of the American Society for Horticultural Science. 2022;111(5):746-750. doi:10.21273/jashs.111.5.746
30. Han Y, Fan S, Zhang Q, Wang Y. Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings. Agricultural Sciences. 2013;04(05):112-115. doi:10.4236/as.2013.45b021
31. Djukić NH, Marković SM, Mastilović JS, Simović P. Differences in proline accumulation between wheat varieties in response to heat stress. Bot Serb. 2021;45(1):61-69. doi:10.2298/BOTSERB2101061D
32. Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta. 2012;236:753-761.
33. Savicka M, Škute N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija. 2010;56(1):26-33.
34. Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300-309.
35. Yildiz M, Terzi H. Evaluation of acquired thermotolerance in wheat (Triticum aestivum and T. durum) cultivars grown in Turkey. Pak J Bot. 2008;40(1):317-327.
36. Yildiz M, Kasap E. Comparison of germination responses of cultivated wheat (Triticum) and its wild relative (Aegilops) species under salinity, temperature and light. Acta Agronomica Hungarica. 2007;55(4):407-415. doi:10.1556/AAgr.55.2007.4.2
37. Terzioglu S, Yildiz M, Yucel M, Oktem HA. High temperature responses of Aegilops biuncialis species and Triticum durum cultivar. Pakistan Journal of Biological Sciences. 2006;9(14):2579-2585. doi:10.3923/pjbs.2006.2579.2585
38. Bellundagi A, Ramya KT, Krishna H, et al. Marker-assisted backcross breeding for heat tolerance in bread wheat (Triticum aestivum L.). Front Genet. 2022;13. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.1056783
39. DeWitt N, Lyerly J, Guedira M, et al. Bearded or Smooth? Awns Improve Yield When Wheat Experiences Heat Stress during Grain Fill.; 2023. doi:10.1101/2023.02.27.530138
40. Pradhan S, Babar MA, Bai G, et al. Genetic dissection of heat-responsive physiological traits to improve adaptation and increase yield potential in soft winter wheat. BMC Genomics. 2020;21(1):315. doi:10.1186/s12864-020-6717-7
41. Sallam M, Al-Ashkar I, Al-Doss A, Al-Gaadi KA, Zeyada AM, Ghazy A. Assessing Heat Stress Tolerance of Wheat Genotypes through Integrated Molecular and Physio-Biochemical Analyses. Agronomy. 2024;14(9):1999. doi:10.3390/agronomy14091999
42. Satyabrata N, Gagan K, Sajid H. Role of molecular markers in improving abiotic stress tolerance in agricultural crops. Research Journal of Biotechnology Vol. 2022;17:1.
43. Ps S, Sv AM, Prakash C, et al. High Resolution Mapping of QTLs for Heat Tolerance in Rice Using a 5K SNP Array. Rice. 2017;10(1). doi:10.1186/s12284-017-0167-0
44. Kumar R, Sharma VK, Rangari SK, et al. High confidence QTLs and key genes identified using Meta-QTL analysis for enhancing heat tolerance in chickpea (Cicer arietinum L.). Front Plant Sci. 2023;14. doi:10.3389/fpls.2023.1274759
45. Liu H, Zeng B, Zhao J, Yan S, Wan J, Cao Z. Genetic Research Progress: Heat Tolerance in Rice. Int J Mol Sci. 2023;24(8). doi:10.3390/ijms24087140
46. Chugh V, Kaur D, Purwar S, et al. Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops. Life. 2023;13(1). doi:10.3390/life13010088
47. Kumar J, Mir RR, Shafi S, et al. Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci. 2022;23(1). doi:10.3390/ijms23010399
48. Ebeed HT. Omics Approaches for Developing Abiotic Stress Tolerance in Wheat. In: Wheat Production in Changing Environments. ; 2019:443-463. doi:10.1007/978-981-13-6883-7_17
49. Sihag P, Kumar U, Sagwal V, et al. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). Plant Genome. 2024;17(1). doi:10.1002/tpg2.20307
50. Wang J, Liang C, Yang S, et al. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ. 2021;9. doi:10.7717/peerj.11509
51. Wolff S, Otto A, Albrecht D, et al. Gel-free and gel-based proteomics in Bacillus subtilis: A comparative study. Molecular and Cellular Proteomics. 2006;5(7):1183-1192. doi:10.1074/mcp.M600069-MCP200
52. Ni Z, Li H, Zhao Y, et al. Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. Crop J. 2018;6(1):32-41. doi:https://doi.org/10.1016/j.cj.2017.09.005